Sphere packings, rational curves, and Coxeter graphs

Arthur Baragar

University of Nevada, Las Vegas

October 24th, 2019

Arthur Baragar
Sphere packings, rational curves, and Coxeter graphs

Think geometrically, act algebraically.

The Markoff equation

$$
\mathcal{M}_{3}: \quad x^{2}+y^{2}+z^{2}=3 x y z
$$

- Studied by Markoff (1881) because of its relation to Diophantine approximation.
- Has three obvious automorphisms, the Viète involutions $\sigma_{1}, \sigma_{2}, \sigma_{3}$:
- Starting with $(1,1,1)$, this gives a tree of integer solutions.

The Markoff equation

$$
\mathcal{M}_{3}: \quad x^{2}+y^{2}+z^{2}=3 x y z
$$

- Studied by Markoff (1881) because of its relation to Diophantine approximation.
- Has three obvious automorphisms, the Viète involutions $\sigma_{1}, \sigma_{2}, \sigma_{3}$

[^0]
The Markoff equation

$$
\mathcal{M}_{3}: \quad x^{2}+y^{2}+z^{2}=3 x y z
$$

- Studied by Markoff (1881) because of its relation to Diophantine approximation.
- Has three obvious automorphisms, the Viète involutions $\sigma_{1}, \sigma_{2}, \sigma_{3}$:

$$
\sigma_{3}: \quad(x, y, z) \mapsto(x, y, 3 x y-z)
$$

- Starting with $(1,1,1)$, this gives a tree of integer solutions.

The Markoff equation

$$
\mathcal{M}_{3}: \quad x^{2}+y^{2}+z^{2}=3 x y z
$$

- Studied by Markoff (1881) because of its relation to Diophantine approximation.
- Has three obvious automorphisms, the Viète involutions $\sigma_{1}, \sigma_{2}, \sigma_{3}$:

$$
\sigma_{3}: \quad(x, y, z) \mapsto(x, y, 3 x y-z)
$$

- Starting with $(1,1,1)$, this gives a tree of integer solutions.

The Markoff tree (variation)

Let $\mathcal{G}=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle$. Then $\mathcal{M}_{3}\left(\mathbb{Z}^{+}\right)=\mathcal{G}((1,1,1))$. (A descent argument)

The Markoff tree (variation)

Let $\mathcal{G}=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle$. Then $\mathcal{M}_{3}\left(\mathbb{Z}^{+}\right)=\mathcal{G}((1,1,1))$. (A descent argument)

Theorem (Zagier, '82)

$$
N_{\mathcal{M}_{3}\left(\mathbb{Z}^{+}\right)}(B)=\#\left\{(x, y, z) \in \mathcal{M}_{3}\left(\mathbb{Z}^{+}\right): \max \{x, y, z\}<B\right\}
$$

- The map Ψ is node to node. It is approximately logarithmic.
- The nodes in the Euclid tree \mathfrak{E} are coprime pairs.

Theorem (Zagier, '82)

$$
\begin{aligned}
N_{\mathcal{M}_{3}\left(\mathbb{Z}^{+}\right)}(B) & =\#\left\{(x, y, z) \in \mathcal{M}_{3}\left(\mathbb{Z}^{+}\right): \max \{x, y, z\}<B\right\} \\
& =c(\log B)^{2}+O\left(\log B(\log \log B)^{2}\right)
\end{aligned}
$$

- The map Ψ is node to node. It is approximately logarithmic.
- The nodes in the Euclid tree \mathfrak{E} are coprime pairs.

Theorem (Zagier, '82)

$$
\begin{aligned}
N_{\mathcal{M}_{3}\left(\mathbb{Z}^{+}\right)}(B) & =\#\left\{(x, y, z) \in \mathcal{M}_{3}\left(\mathbb{Z}^{+}\right): \max \{x, y, z\}<B\right\} \\
& =c(\log B)^{2}+O\left(\log B(\log \log B)^{2}\right)
\end{aligned}
$$

(From Zagier, 1982)

- The map Ψ is node to node. It is approximately logarithmic.
- The nodes in the Euclid tree \mathbb{E} are coprime pairs.

Theorem (Zagier, '82)

$$
\begin{aligned}
N_{\mathcal{M}_{3}\left(\mathbb{Z}^{+}\right)}(B) & =\#\left\{(x, y, z) \in \mathcal{M}_{3}\left(\mathbb{Z}^{+}\right): \max \{x, y, z\}<B\right\} \\
& =c(\log B)^{2}+O\left(\log B(\log \log B)^{2}\right)
\end{aligned}
$$

(From Zagier, 1982)

- The map Ψ is node to node. It is approximately logarithmic.
- The nodes in the Euclid tree \mathbb{E} are coprime pairs.

Theorem (Zagier, '82)

$$
\begin{aligned}
N_{\mathcal{M}_{3}\left(\mathbb{Z}^{+}\right)}(B) & =\#\left\{(x, y, z) \in \mathcal{M}_{3}\left(\mathbb{Z}^{+}\right): \max \{x, y, z\}<B\right\} \\
& =c(\log B)^{2}+O\left(\log B(\log \log B)^{2}\right)
\end{aligned}
$$

(From Zagier, 1982)

- The map Ψ is node to node. It is approximately logarithmic.
- The nodes in the Euclid tree \mathbb{E} are coprime pairs

Theorem (Zagier, '82)

$$
\begin{aligned}
N_{\mathcal{M}_{3}\left(\mathbb{Z}^{+}\right)}(B) & =\#\left\{(x, y, z) \in \mathcal{M}_{3}\left(\mathbb{Z}^{+}\right): \max \{x, y, z\}<B\right\} \\
& =c(\log B)^{2}+O\left(\log B(\log \log B)^{2}\right)
\end{aligned}
$$

(From Zagier, 1982)

- The map Ψ is node to node. It is approximately logarithmic.
- The nodes in the Euclid tree \mathfrak{E} are coprime pairs.

Theorem (B. '94, '98; Gamburd, Magee, Ronan '19(?))

$$
\text { For } \quad \begin{aligned}
& \mathcal{M}_{4}: \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=4 x_{1} x_{2} x_{3} x_{4} \\
& N_{\mathcal{M}_{4}\left(\mathbb{Z}^{+}\right)}(B)=c(\log B)^{\beta}+o\left((\log B)^{\beta}\right),
\end{aligned}
$$

where $2.43<\beta<2.477$.

Theorem (B. '94, '98; Gamburd, Magee, Ronan '19(?))

$$
\text { For } \quad \begin{aligned}
& \mathcal{M}_{4}: \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=4 x_{1} x_{2} x_{3} x_{4} \\
& N_{\mathcal{M}_{4}\left(\mathbb{Z}^{+}\right)}(B)=c(\log B)^{\beta}+o\left((\log B)^{\beta}\right),
\end{aligned}
$$

where $2.43<\beta<2.477$.

Theorem (B. '94, '98; Gamburd, Magee, Ronan '19(?))

$$
\text { For } \quad \begin{aligned}
& \mathcal{M}_{4}: \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=4 x_{1} x_{2} x_{3} x_{4} \\
& N_{\mathcal{M}_{4}\left(\mathbb{Z}^{+}\right)}(B)=c(\log B)^{\beta}+o\left((\log B)^{\beta}\right),
\end{aligned}
$$

where $2.43<\beta<2.477$.

The Apollonian packing

Theorem (Boyd, '82; Kontorovich and Oh, '11; Lee and Oh, '13)

Let \mathcal{A} be the set of curvatures in an Apollonian packing. Then there exists a $\mu>0$ so that
where $1.30<\alpha<1.315$ is the Huasdorff dimension of the residual set.

The exponent β for the Hurwitz equation looks like a fractal dimension. Is there a picture?

The Apollonian packing

Theorem (Boyd, '82; Kontorovich and Oh, '11; Lee and Oh, '13)

Let \mathcal{A} be the set of curvatures in an Apollonian packing. Then there exists a $\mu>0$ so that

$$
N_{\mathcal{A}}(B)=c B^{\alpha}+O\left(B^{\alpha-\mu}\right)
$$

where $1.30<\alpha<1.315$ is the Huasdorff dimension of the residual set.

The exponent β for the Hurwitz equation looks like a fractal dimension. Is there a picture?

The Apollonian packing

Theorem (Boyd, '82; Kontorovich and Oh, '11; Lee and Oh, '13)

Let \mathcal{A} be the set of curvatures in an Apollonian packing. Then there exists a $\mu>0$ so that

$$
N_{\mathcal{A}}(B)=c B^{\alpha}+O\left(B^{\alpha-\mu}\right)
$$

where $1.30<\alpha<1.315$ is the Huasdorff dimension of the residual set.

The exponent β for the Hurwitz equation looks like a fractal dimension. Is there a picture?

Smooth $(2,2,2)$ forms in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$

$$
\mathcal{X}: \quad F(X, Y, Z)=F_{0}(Y, Z) X_{0}^{2}+F_{1}(Y, Z) X_{0} X_{1}+F_{2}(Y, Z) X_{1}^{2}=0
$$

- Similar $\mathcal{G}=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle \leq \operatorname{Aut}(\mathcal{X})$.
- A K3 surface.

Theorem (B., '96)

For \mathcal{X} generic of this type, and P generic in \mathcal{X}

Smooth $(2,2,2)$ forms in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$

$$
\mathcal{X}: \quad F(X, Y, Z)=F_{0}(Y, Z) X_{0}^{2}+F_{1}(Y, Z) X_{0} X_{1}+F_{2}(Y, Z) X_{1}^{2}=0
$$

- Similar $\mathcal{G}=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle \leq \operatorname{Aut}(\mathcal{X})$.

Theorem (B., '96)

For \mathcal{X} generic of this type, and P generic in \mathcal{X}

Smooth $(2,2,2)$ forms in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$

$$
\mathcal{X}: \quad F(X, Y, Z)=F_{0}(Y, Z) X_{0}^{2}+F_{1}(Y, Z) X_{0} X_{1}+F_{2}(Y, Z) X_{1}^{2}=0
$$

- Similar $\mathcal{G}=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle \leq \operatorname{Aut}(\mathcal{X})$.
- A K3 surface.
(Wehler, '88)
Theorem (B., '96)
For \mathcal{X} generic of this type, and P generic in \mathcal{X}

Smooth $(2,2,2)$ forms in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$

$$
\mathcal{X}: \quad F(X, Y, Z)=F_{0}(Y, Z) X_{0}^{2}+F_{1}(Y, Z) X_{0} X_{1}+F_{2}(Y, Z) X_{1}^{2}=0
$$

- Similar $\mathcal{G}=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle \leq \operatorname{Aut}(\mathcal{X})$.
- A K3 surface.
(Wehler, '88)

Theorem (B., '96)

For \mathcal{X} generic of this type, and P generic in \mathcal{X},

$$
N_{\mathcal{G}(P)}(B) \gg \ll \log B .
$$

Generic case

$\mathcal{G}(P)$

The right hand side is the classical Gauss lattice point problem in hyperbolic geometry. Asymptotics are due to Patterson, '75.

Generic case

The right hand side is the classical Gauss lattice point problem in hyperbolic geometry. Asymptotics are due to Patterson, '75.

Generic case

$$
\mathcal{G}(P) \quad \xrightarrow{\Psi}
$$

The right hand side is the classical Gauss lattice point problem in hyperbolic geometry. Asymptotics are due to Patterson, '75

Generic case

$$
\mathcal{G}(P) \quad \xrightarrow{\Psi}
$$

The right hand side is the classical Gauss lattice point problem in hyperbolic geometry. Asymptotics are due to Patterson, '75

Generic case

$$
\mathcal{G}(P) \xrightarrow{\Psi}
$$

The right hand side is the classical Gauss lattice point problem in hyperbolic geometry.
Asymptotics are due to Patterson, '75

Generic case

$$
\mathcal{G}(P) \xrightarrow{\Psi}
$$

The right hand side is the classical Gauss lattice point problem in hyperbolic geometry. Asymptotics are due to Patterson, '75.

A non-generic case

$$
\mathcal{X}: \quad F(X, Y, Z)=F_{0}(Y, Z) X_{0}^{2}+F_{1}(Y, Z) X_{0} X_{1}+F_{2}(Y, Z) X_{1}^{2}=0
$$

- In the generic case, the curves $F_{i}(Y, Z)$ do not intersect in $\mathbb{P}^{1} \times \mathbb{P}^{1}$
- What if there exists a point $Q=\left(Q_{y}, Q_{z}\right) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ such that $F_{i}\left(Q_{y}, Q_{z}\right)=0$ for all i ? (... but is otherwise generic.)
- Then \mathcal{X} includes the line

A non-generic case

$$
\mathcal{X}: \quad F(X, Y, Z)=F_{0}(Y, Z) X_{0}^{2}+F_{1}(Y, Z) X_{0} X_{1}+F_{2}(Y, Z) X_{1}^{2}=0
$$

- In the generic case, the curves $F_{i}(Y, Z)$ do not intersect in $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
- What if there exists a point $Q=\left(Q_{y}, Q_{z}\right) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ such that $F_{i}\left(Q_{y}, Q_{z}\right)=0$ for all i ? (... but is otherwise generic.)
- Then \mathcal{X} includes the line

A non-generic case

$$
\mathcal{X}: \quad F(X, Y, Z)=F_{0}(Y, Z) X_{0}^{2}+F_{1}(Y, Z) X_{0} X_{1}+F_{2}(Y, Z) X_{1}^{2}=0
$$

- In the generic case, the curves $F_{i}(Y, Z)$ do not intersect in $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
- What if there exists a point $Q=\left(Q_{y}, Q_{z}\right) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ such that $F_{i}\left(Q_{y}, Q_{z}\right)=0$ for all i ? (... but is otherwise generic.)

A non-generic case

$$
\mathcal{X}: \quad F(X, Y, Z)=F_{0}(Y, Z) X_{0}^{2}+F_{1}(Y, Z) X_{0} X_{1}+F_{2}(Y, Z) X_{1}^{2}=0
$$

- In the generic case, the curves $F_{i}(Y, Z)$ do not intersect in $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
- What if there exists a point $Q=\left(Q_{y}, Q_{z}\right) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ such that $F_{i}\left(Q_{y}, Q_{z}\right)=0$ for all i ? (... but is otherwise generic.)
- Then \mathcal{X} includes the line

$$
L=L(T)=\left(T, Q_{y}, Q_{z}\right)
$$

The map Ψ is $\left(\operatorname{deg}_{T}(X), \operatorname{deg}_{T}(Y), \operatorname{deg}_{T}(Z)\right.$, intersection with $\left.L\right) \ldots$ passage to the
Picard group. Note $[\mathcal{A}: \mathcal{G}]=\infty$, where $\mathcal{A}=\operatorname{Aut}(\mathcal{X})$.

The map Ψ is $\left(\operatorname{deg}_{T}(X), \operatorname{deg}_{T}(Y), \operatorname{deg}_{T}(Z)\right.$, intersection with $\left.L\right) \ldots \quad$ passage to the Picard group.

The map Ψ is $\left(\operatorname{deg}_{T}(X), \operatorname{deg}_{T}(Y), \operatorname{deg}_{T}(Z)\right.$, intersection with $\left.L\right) \ldots \quad$ passage to the Picard group.

The map Ψ is $\left(\operatorname{deg}_{T}(X), \operatorname{deg}_{T}(Y), \operatorname{deg}_{T}(Z)\right.$, intersection with $\left.L\right) \ldots$ passage to the Picard group. Note $[\mathcal{A}: \mathcal{G}]=\infty$, where $\mathcal{A}=\operatorname{Aut}(\mathcal{X}) \ldots$

The map Ψ is $\left(\operatorname{deg}_{T}(X), \operatorname{deg}_{T}(Y), \operatorname{deg}_{T}(Z)\right.$, intersection with $\left.L\right) \ldots \quad$ passage to the Picard group. Note $[\mathcal{A}: \mathcal{G}]=\infty$, where $\mathcal{A}=\operatorname{Aut}(\mathcal{X}) \ldots$

$\mathcal{A}(L) \xrightarrow{\Psi}$

The map Ψ is $\left(\operatorname{deg}_{T}(X), \operatorname{deg}_{T}(Y), \operatorname{deg}_{T}(Z)\right.$, intersection with $\left.L\right) \ldots \quad$ passage to the Picard group. Note $[\mathcal{A}: \mathcal{G}]=\infty$, where $\mathcal{A}=\operatorname{Aut}(\mathcal{X}) \ldots$

$$
\mathcal{A}(L) \xrightarrow{\Psi}
$$

The point at infinity, E, represents an elliptic fibration of \mathcal{X}. Curvature is
intersection with E, and $L \cdot E=1$

$$
\mathcal{A}(L) \xrightarrow{\Psi}
$$

The point at infinity, E, represents an elliptic fibration of \mathcal{X}. Curvature is intersection with E, and $L \cdot E=1$.

$$
\mathcal{A}(L) \xrightarrow{\Psi}
$$

Counting:

$$
N_{\mathcal{A}(L)}(B)=c B^{\delta}+o\left(B^{\delta}\right)
$$

where δ is the Hausdorff dimension of the residual set (using Oh et al.).

$$
\mathcal{A}(L) \xrightarrow{\Psi}
$$

Counting:

$$
N_{\mathcal{A}(L)}(B)=c B^{\delta}+o\left(B^{\delta}\right)
$$

where δ is the Hausdorff dimension of the residual set (using Oh et al.). $\delta \sim 1.29$ (experimental).

The Apollonian circle packing

The Markoff-Hurwitz equations Smooth (2, 2, 2) forms Apollonian sphere packings and Enriques surfaces

The Apollonian packing again Generic nodal Enriques surfaces Coda

Theorem (B., '17)
There exists a K3 surface \mathcal{X} such that the configuration of circles generated by its smooth rational curves is exactly the Apollonian circle packing.

.... uses a result by Morrison ('84).

Theorem (B., '17)

There exists a K3 surface \mathcal{X} such that the configuration of circles generated by its smooth rational curves is exactly the Apollonian circle packing.
... uses a result by Morrison ('84).

Theorem (B., '17)

There exists a K3 surface \mathcal{X} such that the configuration of circles generated by its smooth rational curves is exactly the Apollonian circle packing.
... uses a result by Morrison ('84).

Theorem (B., '17)

There exists a K3 surface \mathcal{X} such that the configuration of circles generated by its smooth rational curves is exactly the Apollonian circle packing.

$$
\left[\mathbf{e}_{i} \cdot \mathbf{e}_{j}\right]=\left[\begin{array}{cccc}
-2 & 2 & 2 & 2 \\
2 & -2 & 2 & 2 \\
2 & 2 & -2 & 2 \\
2 & 2 & 2 & -2
\end{array}\right]
$$

... uses a result by Morrison ('84).

The Soddy sphere packing

$$
\left[\mathbf{e}_{i} \cdot \mathbf{e}_{j}\right]=\left[\begin{array}{ccccc}
-2 & 2 & 2 & 2 & 2 \\
2 & -2 & 2 & 2 & 2 \\
2 & 2 & -2 & 2 & 2 \\
2 & 2 & 2 & -2 & 2 \\
2 & 2 & 2 & 2 & -2
\end{array}\right]
$$

Excerpt of Mathematical Review MR0350626 (50 \# 3118) for Boyd's paper ('74)

"... and he uses these conditions to exhibit a total of thirteen infinite packings in dimensions 2, 3, 4, 5 and 9. These examples include the Apollonian (2.1) and Soddy (3.1) packings that arise from any cluster of mutually tangent balls in dimension 2 or 3 , respectively. The other examples are particularly intriguing because mutually tangent clusters do not give rise to packings in dimension $n \geq 4$."

Generic nodal Enriques surfaces

Theorem (Coble, 1919; Looijenga; Cossec and Dolgachev, '89; Allcock, '18)

Suppose X is a generic nodal Enriques surface with nodal curve ν. Let Λ be its Picard group modulo torsion. Then there exist $\beta_{0}, \ldots, \beta_{9} \in \Lambda$ so that $\beta_{i} \cdot \beta_{i}=-2$ and $\beta_{1}, \ldots, \beta_{9}, \nu$ are the nodes of the Coxeter graph:

Let

$$
\Gamma=\left\langle R_{\beta_{0}}, \ldots, R_{\beta_{9}}\right\rangle \cong W_{246}
$$

Then the image in Λ of all nodal curves on X is the Γ-orbit of ν.

The Markoff-Hurwitz equations
β_{1}

- Each node represents a vector/plane.
- No edge means they are perpendicular: $\beta_{i} \cdot \beta_{j}=0$.
- A regular edge means the vectors are at an angle of $2 \pi / 3: \beta_{i} \cdot \beta_{j}=1\left(\beta_{i}^{2}=-2\right)$
- A bold edge means the vectors are parallel: $\beta_{9} \cdot \nu=2$.

The Markoff-Hurwitz equations

- Each node represents a vector/plane.
- No edge means they are perpendicular: $\beta_{i} \cdot \beta_{j}=0$.
- A regular edge means the vectors are at an angle of $2 \pi / 3: \beta_{i} \cdot \beta_{j}=1\left(\beta_{i}^{2}=-2\right)$
- A bold edge means the vectors are parallel: $\beta_{9} \cdot \nu=2$.

The Markoff-Hurwitz equations
$\stackrel{\circ}{\beta_{1}}$

- Each node represents a vector/plane.
- No edge means they are perpendicular: $\beta_{i} \cdot \beta_{j}=0$.
- A regular edge means the vectors are at an angle of $2 \pi / 3: \beta_{i} \cdot \beta_{j}=1\left(\beta_{i}^{2}=-2\right)$.
- A bold edge means the vectors are parallel: $\beta_{9} \cdot \nu=2$.

- Each node represents a vector/plane.
- No edge means they are perpendicular: $\beta_{i} \cdot \beta_{j}=0$.
- A regular edge means the vectors are at an angle of $2 \pi / 3: \beta_{i} \cdot \beta_{j}=1\left(\beta_{i}^{2}=-2\right)$.
- A bold edge means the vectors are parallel: $\beta_{9} \cdot \nu=2$.

$\stackrel{\circ}{\beta_{1}}$
- Each node represents a vector/plane.
- No edge means they are perpendicular: $\beta_{i} \cdot \beta_{j}=0$.
- A regular edge means the vectors are at an angle of $2 \pi / 3: \beta_{i} \cdot \beta_{j}=1\left(\beta_{i}^{2}=-2\right)$.
- A bold edge means the vectors are parallel: $\beta_{9} \cdot \nu=2$.

- Each node represents a vector/plane.
- No edge means they are perpendicular: $\beta_{i} \cdot \beta_{j}=0$.
- A regular edge means the vectors are at an angle of $2 \pi / 3: \beta_{i} \cdot \beta_{j}=1\left(\beta_{i}^{2}=-2\right)$.
- A bold edge means the vectors are parallel: $\beta_{9} \cdot \nu=2$.

- Each node represents a vector/plane.
- No edge means they are perpendicular: $\beta_{i} \cdot \beta_{j}=0$.
- A regular edge means the vectors are at an angle of $2 \pi / 3: \beta_{i} \cdot \beta_{j}=1\left(\beta_{i}^{2}=-2\right)$.
- A bold edge means the vectors are parallel: $\beta_{9} \cdot \nu=2$.

$\stackrel{O}{\beta_{1}} \mathbf{O}$
- Each node represents a vector/plane.
- No edge means they are perpendicular: $\beta_{i} \cdot \beta_{j}=0$.
- A regular edge means the vectors are at an angle of $2 \pi / 3: \beta_{i} \cdot \beta_{j}=1\left(\beta_{i}^{2}=-2\right)$.
- A bold edge means the vectors are parallel: $\beta_{9} \cdot \nu=2$.

- Each node represents a vector/plane.
- No edge means they are perpendicular: $\beta_{i} \cdot \beta_{j}=0$.
- A regular edge means the vectors are at an angle of $2 \pi / 3: \beta_{i} \cdot \beta_{j}=1\left(\beta_{i}^{2}=-2\right)$.
- A bold edge means the vectors are parallel: $\beta_{9} \cdot \nu=2$.

The Markoff-Hurwitz equations
$\bigcirc \quad \beta_{1}$
$\left[\begin{array}{ccccccccc}-2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1\end{array}\right.$

$$
\left[\beta_{i} \cdot \beta_{j}\right]=\left[\begin{array}{cccccccccc}
-2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2
\end{array}\right]
$$

The Markoff-Hurwitz equations

$R_{\beta_{i}}(\mathrm{x})=\mathrm{x}-2 \operatorname{proj}_{\beta_{i}}(\mathrm{x})$

The Markoff-Hurwitz equations

$R_{\beta_{i}}(\mathrm{x})=\mathrm{x}-2 \operatorname{proj}_{\beta_{i}}(\mathrm{x})$

The Markoff-Hurwitz equations

$R_{\beta_{i}}(\mathrm{x})=\mathrm{x}-2 \operatorname{proj}_{\beta_{i}}(\mathrm{x})$

$$
\begin{aligned}
R_{\beta_{i}}(\mathbf{x}) & =\mathbf{x}-2 \operatorname{proj}_{\beta_{i}}(\mathbf{x}) \\
& =\mathbf{x}-2 \frac{\mathbf{x} \cdot \beta_{i}}{\beta_{i} \cdot \beta_{i}} \beta_{i} \\
& =\mathbf{x}+\left(\mathbf{x} \cdot \beta_{i}\right) \beta_{i}
\end{aligned}
$$

$$
\begin{aligned}
R_{\beta_{i}}(\mathbf{x}) & =\mathbf{x}-2 \operatorname{proj}_{\beta_{i}}(\mathbf{x}) \\
& =\mathbf{x}-2 \frac{\mathbf{x} \cdot \beta_{i}}{\beta_{i} \cdot \beta_{i}} \beta_{i} \\
& =\mathbf{x}+\left(\mathbf{x} \cdot \beta_{i}\right) \beta_{i} . \\
\mathbf{e}_{0} & =\nu \\
\mathbf{e}_{1} & =R_{\beta_{9}}\left(\mathbf{e}_{0}\right) \\
\mathbf{e}_{i+1} & =R_{\beta_{10-i}}\left(\mathbf{e}_{i}\right)
\end{aligned}
$$

$$
\left[\mathbf{e}_{i} \cdot \mathbf{e}_{j}\right]=\left[\begin{array}{cccccccccc}
-2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & -2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & -2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & -2 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & -2 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 & -2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 & 2 & -2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & -2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & -2 & 2 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & -2
\end{array}\right]
$$

$$
\left[\begin{array}{cccccccccc}
-2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & -2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & -2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
\end{array}\right]
$$

Theorem (B., '19)
The set of nodal curves on a generic nodal Enriques surface generates an Apollonian packing in eight dimensions.
$\left\lfloor\begin{array}{cccccccccc}2 & 2 & 2 & 2 & 2 & 2 & 2 & -2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & -2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & -2\end{array}\right\rfloor$

TABLE II

$N=11$

1 orbit

2^{9}
2 orbits:

$N=10$
1 orbit:

$5^{9} / 2^{20}$

$3^{18} / 2^{20}$

From Maxwell, '81.
$2\left[\beta_{i} \cdot \beta_{j}\right]^{-1}=\left[\begin{array}{cccccccccc}5 & 3 & 6 & 9 & 12 & 10 & 8 & 6 & 4 & 2 \\ 3 & 0 & 2 & 4 & 6 & 5 & 4 & 3 & 2 & 1 \\ 6 & 2 & 4 & 8 & 12 & 10 & 8 & 6 & 4 & 2 \\ 9 & 4 & 8 & 12 & 18 & 15 & 12 & 9 & 6 & 3 \\ 12 & 6 & 12 & 18 & 24 & 20 & 16 & 12 & 8 & 4 \\ 10 & 5 & 10 & 15 & 20 & 15 & 12 & 9 & 6 & 3 \\ 8 & 4 & 8 & 12 & 16 & 12 & 8 & 6 & 4 & 2 \\ 6 & 3 & 6 & 9 & 12 & 9 & 6 & 3 & 2 & 1 \\ 4 & 2 & 4 & 6 & 8 & 6 & 4 & 2 & 0 & 0 \\ 2 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 0 & -1\end{array}\right]$
$2\left[\alpha_{i} \cdot \alpha_{j}\right]^{-1}=\left[\begin{array}{cccc}2 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 0 & 0 \\ 1 & 1 & 0 & -1\end{array}\right]$

$2\left[\beta_{i} \cdot \beta_{j}\right]^{-1}=\left[\begin{array}{cccccccccc}5 & 3 & 6 & 9 & 12 & 10 & 8 & 6 & 4 & 2 \\ 3 & 0 & 2 & 4 & 6 & 5 & 4 & 3 & 2 & 1 \\ 6 & 2 & 4 & 8 & 12 & 10 & 8 & 6 & 4 & 2 \\ 9 & 4 & 8 & 12 & 18 & 15 & 12 & 9 & 6 & 3 \\ 12 & 6 & 12 & 18 & 24 & 20 & 16 & 12 & 8 & 4 \\ 10 & 5 & 10 & 15 & 20 & 15 & 12 & 9 & 6 & 3 \\ 8 & 4 & 8 & 12 & 16 & 12 & 8 & 6 & 4 & 2 \\ 6 & 3 & 6 & 9 & 12 & 9 & 6 & 3 & 2 & 1 \\ 4 & 2 & 4 & 6 & 8 & 6 & 4 & 2 & 0 & 0 \\ 2 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 0 & -1\end{array}\right]$
$2\left[\alpha_{i} \cdot \alpha_{j}\right]^{-1}=\left[\begin{array}{cccc}2 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 0 & 0 \\ 1 & 1 & 0 & -1\end{array}\right]$

[^0]: - Starting with $(1,1,1)$, this gives a tree of integer solutions.

